In vivo cerebrovascular characterization of CCM in a mouse model

Khaled M. Krisht, M.D.

- **Collaborating labs:** Dr. Kevin Whitehead and Dr. KC Brennan
- **Objective:** To elucidate the vascular morphology and function of cavernous malformations and nearby cortical vessels in CCM mice in an in vivo setting.

CCM: Cerebrovascular malformation secondary to endothelial cell dysfunction.
- Spontaneous
- Familial (AD)
- 3 main genes responsible for CCM: **Krit1, CCM2, Pdcd10**

- **What we know?**
 - Krit1 and CCM2 are believed to act through similar molecular mechanisms: Prevent the activation of the GTPase Rho-A which is believed to be responsible for endothelial cell dysfunction and breakdown of cell-cell interaction.
 - Inhibition of RhoA and down stream Rho-Kinase with **simvastatin** and **Fausadil**, respectively, reversed many of the cell permeability and cytoskeletal aberrations observed with CCM KO mice: Improved cell resistance, improved endothelial cell alignment to laminar flow, and permeability.
 - Dr. Whitehead’s lab has early results showing that the structural and functional deficits observed with their CCM2 KO mice can be rescued with **Tempol**, a superoxide scavenger.

- **What we are trying to do?**
 - Expand our work to include in vivo characterization of the vascular defects of CCM mice using 2-photon microscopy and IOS/IOI.
 - SSER in arteries/arterioles
 - CSD induction threshold
 - Vasodilatory effects of Ach
 - Permeability studies
 - Neurovascular mapping
 - Attempt to rescue with tempol and simvastatin.