Katharine E Alter MD

Medical Director, Rehabilitation Programs, Mount Washington Pediatric Hospital, Baltimore Maryland

Medical Director, Functional and Applied Biomechanics Section, Rehabilitation Medicine, Senior Clinician NICHD, National Institutes of Health, Bethesda Maryland
Lecture Objectives

- Review the history of botulinum toxins (BoNT)
- Describe the mechanism of action of BoNT at the motor neuron
- Discuss pharmacologic differences observed with the currently available BoNT preparations
- Introduce the clinical utility of botulinum toxin
BoNTs

- Biological product of *Clostridium botulinum bacterium*\(^1\)
- Therapeutic agents for a variety of conditions including
 - Ocular disorders: strabismus, blepharospasm
 - Muscle over-activity: CD, UMN \(^2\):
 - Pain: Chronic Migraine
 - GU: OAB
 - Aesthetic: wrinkles
 - Secretory: hyperhydrosis
 - Other conditions
- 7 BoNT serotypes (A-G)\(^1\). Only types A & B are available for clinical use\(^3\)

History of Botulinum Toxins

1700’s-1800’s

1920 Sommer
Identified, purified Botulinum toxin

1944
E. Schantz
Identified BoNT
Site of Action

1949 Burgan
Identified BoNT
Site of Action

1968

1970’s-80’s

Upper Limb Spasticity
2010

1° Axillary HH
2004

BOTOX® Cosmetic
2002

Allergan
BOTOX®
1989

Myobloc® / NeuroBloc®
2000

Xeomin/Merz
US Approval 2011

Dysport US
2009 (CD)

Dysport®
1991
Normal Innervation
Synaptic vesicle

Acetylcholine

SNARE Protein Complex

Neuronal membrane

Ca^{2+}
Botulinum Toxins
Mechanism of Action

- **All BoNTs**
 - Work presynaptically
 - Block the release of acetylcholine
 - Leading to graded/dose dependent weakness or release of glandular products
 - Different serotypes have different
 - Intracellular targets
 - Duration of effect
 - “Potency”
Structure of Botulinum Toxin

Light Chain (50kDa)

Heavy Chain (100kDa)

Total complex size: 500-900kD
Neurotoxin Component: 150kD

Associated (Accessory) Proteins

HA

NTNH
BoNT: Binding/Endocytosis
Light Chain Endocytosis
Cleavage/Translocation/Blocking
Light Chain Clevage
Light Chain Cleavage
Light Chain Exits to Cytosol
BoNT:SNAP Cleavage Targets

BoNT B: Cleaves VAMP

BoNT A: Cleaves SNAP25
Denervation/Reinnervation
Botulinum Toxin: Worldwide Available Preparations

- **Botulinum toxin type A Preparations: World Wide**
 - BOTOX®; Allergan, Inc.
 - Dysport®; Ipsen Pharmaceuticals
 - Xeomin®; Merz
 - Puretox, Mentor
 - Reloxin, Europe
 - BTXA, China

- **Botulinum toxin type B Serotype**
 - Myobloc®/NeuroBloc®*; Solstice Neurosciences
 - Licensed for distribution in the US, Europe, and Japan

- **Preparations are unique and units are not interchangeable**:1,2
 - Different strains of C. botulinum used in manufacturing process
 - Purification and formulation methods differ
 - Differences in accessory proteins

*Brand name in Europe.
Reported Uses Clinical Applications of BoNTs

• Abnormal Muscular Contractions
 – Strabismus\(^1\)
 – Cerebral palsy
 – Multiple sclerosis
 – Spasticity Upper limb\(^1\)
 – Spastic bladder (OAB, detrusor)\(^1\)
 – Achalasia (esophageal)
 – Chronic anal fissures,
 – Bladder: detrusor overactivity\(^1\)

• Other Applications
 – Hyperhidrosis\(^1\)
 – Migraine & tension-type HA\(^1\)
 – Myofascial pain
 – Sialorrhea
 – Obesity
 – GU: OAB, BPH, sphincter dyssnergia

• Focal Dystonias
 – Blepharospasm\(^1\)
 – Cervical dystonia\(^1,2\)
 – Oromandibular facial-lingual
 – Spasmodic dysphonia
 – Task-specific (Writer’s Cramp)
 – Musician’s cramp

• Other Involuntary Movements
 – Voice, head, and limb tremor
 – VII nerve facial spasm disorder\(^1\)
 – Hemifacial spasm
 – Palatal myoclonus
 – Tics

1. FDA-approved use for BOTOX®
2. FDA-approved for Myobloc®
2009 FDA Alert/Revised Prescribing Information for BoNTs

- **A Boxed Warning was added to all BoNTs**
 - Highlighting the possibility potentially life-threatening distant spread of toxin effect following local injection.
 - A Risk Evaluation and Mitigation Strategy (REMS) was added to include a *Medication Guide* for patients understand detailing risks/benefits of BoNT.

- To reinforce the differences in toxin potency and reduce potential for dosing errors the FDA established *unique generic drug names* for each toxin.

- The new established names reinforce these differences and the lack of interchangeability among products.

- **Units/dosing are specific to each BoNT product**
 - The practice of using conversion tables between toxins is not recommended.
 - Dose or units of biological activity cannot be compared or converted between products.
BoNTs: U.S. Preparations: FDA Unique Generic Names & Indications (2013)

- **OnabotulinumtoxinA (BOTOX®; Allergan, Inc.)**
 - Licensed for distribution worldwide
 - US Indications: Cervical dystonia, strabismus, blepharospasm, hemifacial spasm, hyperhidrosis, post stroke spasticity, detrusor/ overactive bladder, improved appearance of glabellar lines, migraine

- **AbobotulinumtoxinA (Dysport®; Ipsen Pharmaceuticals)**
 - Licensed for distribution in the USA, UK and Europe
 - US Indication: Cervical dystonia. In clinical trials in USA for other conditions

- **IncobotulinumtoxinA (Xeomin®; Merz)**
 - Licensed for distribution in Europe, US
 - US Indications: Cervical dystonia, blepharospasm, glabellar Lines

- **RimabotulinumB (Myobloc®/NeuroBloc®*; Solsticel Neurosciences)**
 - Licensed for distribution in the US, Europe, and Japan
 - US Indication: Cervical dystonia

*Brand name in Europe.
Botulinum Neurotoxins: Clinical Differentiation

<table>
<thead>
<tr>
<th>Complex Size</th>
<th>Target Protein</th>
<th>Amount of Protein</th>
<th>Reconstituted pH</th>
<th>Final Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoNT-A<sup>*</sup> (Botox®)</td>
<td>SNAP-25</td>
<td>5 ng/100U</td>
<td>Neutral</td>
<td>Vacuum Extraction</td>
</tr>
<tr>
<td>BoNT-A<sup>‡</sup> (Dysport®)</td>
<td>SNAP-25</td>
<td>4.25 ng/500U</td>
<td>Neutral</td>
<td>Lyophilization</td>
</tr>
<tr>
<td>BoNT-A<sup>‡</sup> (Xeomin)</td>
<td>SNAP-25</td>
<td>0.6 ng/100U</td>
<td>Neutral</td>
<td>Lyophilization</td>
</tr>
<tr>
<td>BoNT-B<sup>†</sup> (Myobloc<sup>©</sup>)</td>
<td>VAMP</td>
<td>50 ng/5000U</td>
<td>5.6</td>
<td>Solution</td>
</tr>
</tbody>
</table>

- **Complex Size**: The size of the complex formed by the neurotoxin and its receptor.
- **Target Protein**: The specific protein that the neurotoxin binds to.
- **Amount of protein**: The amount of protein per unit of neurotoxin.
- **Reconstituted pH**: The pH of the solution after reconstitution.
- **Final Formulation**: The final form of the product.

[*]Allergan, Inc-Botox® Package Insert. [†]Solstice Neurosciences-Myobloc™ Package Insert. [‡]Ipsen Ltd-Dysport® Package Insert.
Differences in Serotype Pharmacology: Clinical Considerations

- Toxin Subtype
- Differences
- Complex size
- Protein load
- Diffusion characteristics
- Intracellular target
- Activation level

Different Therapeutic Profile
- Dose
- Duration
- Migration
- Safety
- Antigenicity
Onabotulinumtoxin A/Botox® is available in 100 unit vials. 1 vial is diluted with 1, 2, 4, or 8 mL of preservative-free 0.9% saline, yielding preparations of 10.0, 5.0, 2.5, or 1.25 units / 0.1 mL, respectively. Reconstituted Botox® should be used within 24 hours and stored at 2º - 8º C (200 unit vials available).

AbobotulinumtoxinA/Dysport™ is available in 300 or 500 unit vials. For CD, one 500-unit vial is diluted with 1 mL preservative-free 0.9% saline, yielding a preparation of 500 units/mL. Reconstituted Dysport™ should be used within 4 hours and should be stored at 2º to 8º C.

IncobotulinumtoxinA/Xeomin BoNT-A® is available in 50 and 100 unit vials and reconstituted with 0.9% saline. Reconstituted Xeomin™ should be used within 24 hours and should be stored at 2º to 8º C. Unopened vials can be stored at room temperature, refrigerated or frozen.

RimabotulinumtoxinB- BoNT-B formulated as Myobloc® is supplied as a sterile injectable solution at a concentration of 5,000 units/mL. Vials contain 0.5 mL (2500 units), 1.0 mL (5000 units), or 2.0 mL (10,000 units).
BoNT: Clinical Effects on Muscle Overactivity

- Onset usually within 3 to 5 days; maximum effect at approximately 4 weeks
- Clinical benefit usually >12 weeks; may be extended with adjunctive therapy\(^1\)
- Can be used in conjunction with phenol, surgery, oral medications, intrathecal baclofen,\(^2\) and other rehabilitation modalities

The Basis for Botulinum Toxin Use in Pain

- Improved pain was noted in initial cervical dystonia and spasticity studies
- Brin 1986 series: cervical dystonia:
 - 64% motor improvement
 - 74% pain improvement

http://www.library.ucla.edu/libraries/biomed/his/PainExhibit/panel3.htm
Regulated Exocytosis Multiple Neurotransmitters/Neuropeptides Released From Vesicle

Adapted from *Trends in Cell Biology*, July 1997.
Goals/Clinical Benefits of BoNT Treatment

- Improved passive and active function: better mobility, activity, daily function, and independence
- Increased patient comfort: less pain, better limb positioning for sitting and sleeping
- Reduced disfigurement
- Prevention or delay of musculoskeletal complications
- Improved quality of life and increased well-being
- Reduced burden of care

Guidelines for BoNT Injection: Muscle/Dose Selection

- Determine which muscles need to be injected
- Determine the appropriate dosage and the number and volume of injections per session
- Use the smallest effective total dose and volume
- Use appropriate techniques to achieve precise injection and reduce the risk of complications
 - For limb muscles, use of electromyography (EMG) guidance or electrical stimulation may be helpful in identifying specific muscles (e.g., smaller muscles such as flexor digitorum sublimis)
BoNT Technical Considerations

- **Dose calculation**: It may be more relevant to consider muscle mass, degree of spasticity, and patient body weight than the disease for dose calculation.

- **Administration**: BoNT is administered by IM injection with avid binding to endplates of the motor neuron/muscle spindle and relatively contained diffusion.

- **Injection technique**: Methods of target or muscle localization include the anatomical methods, EMG guidance, electrical stimulation, and ultrasound.

Techniques for BoNT Injections

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Anatomic approach | • No equipment needed
 • Some muscles are accurately, quickly, and easily isolated | • Accuracy may be a problem
 – Examiner inexperience
 – Anatomic variation
 – Anatomic rearrangement
 • Due to spasticity, contractures, deformity, surgery
 • Difficulty isolating deep or overlapping muscles
 • Requires patient cooperation
 • Impaired motor control may cause difficulties |
| EMG | • EMG is widely available
 • Amplifier boxes are inexpensive
 • Clinician familiarity with EMG
 • Provides auditory feedback for needle localization and muscle activity | • EMG signal falsely attributed to target muscle
 – Co-contraction, mass synergy
 – Impaired selective motor control may cause difficulties
 – Anatomic variations/rearrangements due to spasticity, surgery, deformities
 • Requires patient cooperation
 • Impaired motor control
 • May require sedation in children
 • Uses larger needle/more painful |

Techniques for BoNT Injections

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical stimulation</td>
<td>• Equipment is inexpensive, widely accessible</td>
<td>• Requires stimulator or EMG machine</td>
</tr>
<tr>
<td></td>
<td>• May be more accurate than EMG</td>
<td>• Time-consuming/cost</td>
</tr>
<tr>
<td></td>
<td>• Some muscles are quickly and easily isolated</td>
<td>• Pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires patient cooperation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anatomic variations/ rearrangement due to spasticity, contracture, surgery may cause problems with accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Difficult to isolate deep or overlapping muscles</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>• Improved accuracy</td>
<td>• Equipment availability</td>
</tr>
<tr>
<td></td>
<td>• Involuntary muscle activity limits muscle localization with recruitment</td>
<td>• Cost</td>
</tr>
<tr>
<td></td>
<td>– Visualize target muscle with/without AROM*</td>
<td>• Steep learning curve for clinicians</td>
</tr>
</tbody>
</table>

Side Effects Associated with BoNT Therapy

- **Weakness**
 - Local: most important is dysphagia
 - Systemic: minimal weakness, malaise

- **Autonomic effects**
 - Dry mouth, constipation

- **Local effects**
 - Pain, hematoma, infection, rash

- **Antibodies** (subsequent resistance)
Equipment for Specific Muscles

<table>
<thead>
<tr>
<th>Target Muscle</th>
<th>Needle Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craniofacial muscles, Salivary Gland</td>
<td>30-gauge, 0.5-1 inch</td>
</tr>
<tr>
<td>Superficial muscles, upper back</td>
<td>25- to 27-gauge, 1- to 1.5-inch</td>
</tr>
<tr>
<td>Scalenes</td>
<td>1-1.5-inch, 26- or 27-gauge, injectable, monopolar electrode or hypodermic</td>
</tr>
<tr>
<td>Deep compartment muscles of the lumbosacral region</td>
<td>Longer injectable monopolar electrode needles, 75-120 mm or longer, spinal needles with or without use of alligator clip for EMG/Estim</td>
</tr>
</tbody>
</table>
BoNT Injection

- Muscle/target specific IM injection\(^1\)
- Smaller muscles require only 1 injection site within the belly of the muscle\(^2\)
- For larger, longer, or wider muscles several injection sites are suggested (2-4)\(^2\)
 - Clinical Pearl: Consider using a 4 quadrant injection technique at each skin penetration site
 - Similar to the 4 quadrant needle technique used with EMG

Nonresponse to BoNT Therapy

- **Primary non-responder**: no response to initial injection
- **Secondary non-responder**: relative or complete loss of efficacy at subsequent injections

Reasons for non-response
- Inadequate muscle injection technique / improper targeting
- Inappropriate muscle selection
- Dose may be too low
- Change in pattern of muscle involvement
- Soft tissue contracture
- Neutralizing antibodies may be present (but in spasticity, rare)

Tests for non-response: frontalis test, ADQ CMAP stimulation test, antibody assays (limited sensitivity, specificity)

BoNT Resistance: Neutralizing Antibody Formation

- Avoiding resistance
 - Extend treatment interval as long as possible, minimum 3 months between treatments
 - Avoid “booster” or “touch up” injections

- Factors influencing antibody formation
 - Toxin dose
 - Duration/frequency of treatment/injections
 - Prior immunoresistance to other BoNT serotype
 - Protein load
 - Antigen quality and quantity

Why Are Neutralizing Antibodies Important?

- Loss of or limited therapeutic effect
 - Not always due to antibodies
 - Incorrect dose/targeting, contracture, poorly defined goals
 - Patients must seek alternatives that are less effective or are associated with more adverse events

- It is important to minimize risk of antibody formation
 - Use lowest dose in units
 - Less neurotoxin protein load (ng)1,2
 - Use longest interval between injections1,2
 - This will be determined by the duration of effect

Management Post BoNT Injections: Patient Instructions

• Explain that effect of BoNT will be evident in 3 to 7 days, that BoNT alone may not improve function

• Post Injection therapy program
 – Initiate aggressive stretching of injected muscles, may include splinting and bracing
 – Initiate strengthening of opposing muscles
 – Functional retraining with therapist

• Avoid re-injection of BoNT for at 90 days
Summary: Botulinum Toxin Therapy

• BoNT may be useful for treating a wide variety of conditions by inducing toxin mediated reduction in neurotransmitter release.

• This includes blocking of acetylcholine at the
 – NMJ of muscles
 – Muscle spindles
 – Neurglandular junction

• Antinocioceptive effects of BoNTs may be due to
 – Direct effects of the toxin i.e. reduced release of pain neurotransmitters
 – Indirect effects of reduced muscle contraction/spasm

• Commercially available BoNTs are non-interchangeable

• Accurate targeting is important for efficacy, safety and reduction of adverse events