Validation of the Peak Day method of prospective determination of ovulation against a handheld urine hormone monitor

CA Porucznik, KC Schliep, SL Willardson, JB Stanford Division of Public Health, University of Utah, Salt Lake City, UT

Introduction

- Women can identify ovulation by systematic observation of changes in cervical mucus
- We developed Peak Day, a simplified self-education method
- Pilot: most women correctly applied the algorithm in their first cycle

Objective

Compare day of ovulation selected using the Peak Day algorithm to that identified using a blinded home fertility monitor

Goal

Demonstrate that Peak Day is a valid method for

1. Identifying ovulation
2. Timing concurrent or subsequent environmental exposure assessment in large, population-based cohorts of couples trying to conceive

Methods

- Recruited 17 female participants
 - Reproductive age
 - Trying to conceive
- Participants self-taught the Peak Day algorithm from our 3-page educational brochure
- Systematically observed and recorded their fertility signs for up to 2 menstrual cycles
- Selected their estimated day of ovulation using the Peak Day algorithm
- Concurrently tested their first morning urine each day using a modified ClearBlue® Easy fertility monitor
 - Blinded such that it provided no feedback to the user
 - LH surge on monitor determined ovulation
- Calculated sensitivity of Peak Day algorithm to monitor by comparing the dates of estimated days of ovulation

Discussion

- Challenges with LH monitor
 - Timing of daily test
 - Provide no feedback
- Learned towards end of study that test sticks from different lots could not be mixed for a single participant
 - Inaccurate readings
- Challenges with Peak Day algorithm
 - Some women noted fertile-quality premenstrual fluid
 - Specify mid-cycle cervical fluid to identify ovulation
 - Encourage measuring temperature to confirm ovulation
- Peak Day algorithm
 - *More sensitive & precise* than Day 14 or Knaus-Ogino Method
 - *Prospectively determines* ovulation

Conclusion

Peak Day is a novel and resource-efficient method for _prospective_ determination of ovulation.

Compared to home urine monitoring of LH, Peak Day detects ovulation +/-2 days with 81% sensitivity.

Allows for prospective environmental monitoring timed to periconceptional period and developmental windows rather than exposure recall.

Peak Day not precise enough for clinical diagnosis but identifying a 5-day window for ovulation is more precise than typical methods for population-based studies.

Contact Information

University of Utah
Office of Cooperative Reproductive Health
375 Chipeta Way, Suite A
Salt Lake City, UT 84108
Christy Porucznik, PhD MSPH
Christy.Porucznik@utah.edu
Search “Peak Day” on Facebook or Google

Peak Day Algorithm and Sample Chart

<table>
<thead>
<tr>
<th>Day</th>
<th>Mucus Characteristics</th>
<th>Temperature Increase</th>
<th>Ovulation Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Clear</td>
<td>No</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>11</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>12</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>13</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>14</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>15</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>16</td>
<td>Clear</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>17</td>
<td>Stretchy</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>18</td>
<td>Stretchy</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>19</td>
<td>Stretchy</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>20</td>
<td>Stretchy</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
<tr>
<td>21</td>
<td>Stretchy</td>
<td>Yes</td>
<td>Confirmed by ClearBlue Easy Monitor</td>
</tr>
</tbody>
</table>

PEAK DAY SENSITIVITY 81%

Peak Day algorithm selected +/-2 days
17/21 cycles (81%)

Peak Day algorithm selected same day
4/21 cycles (19%)

Participant observes and records

- Presence of cervical fluid (Row 5)
- Characteristics of cervical fluid
 - Slippery (Row 6)
 - Clear (Row 6)
 - Stretchy (Row 8)

Peak Day is last day of any clear, slippery, or stretchy fluid that happens mid-cycle (Row 10)

Waking temperature optional but very helpful to confirm Peak Day

Sensitivity Analysis

<table>
<thead>
<tr>
<th>Ovulation Estimation Method</th>
<th>Sensitivity +/- 2 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Day</td>
<td>81% (17/21)</td>
</tr>
<tr>
<td>Modified Peak Day</td>
<td>86% (18/21)</td>
</tr>
<tr>
<td>Day 14</td>
<td>48% (10/21)</td>
</tr>
<tr>
<td>End of cycle - 14 days</td>
<td>55% (11/20)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ovulation Estimation Method</th>
<th>Sensitivity +/- 1 Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Day</td>
<td>52% (11/21)</td>
</tr>
<tr>
<td>Modified Peak Day</td>
<td>43% (9/21)</td>
</tr>
<tr>
<td>Day 14</td>
<td>48% (10/21)</td>
</tr>
</tbody>
</table>

Participants self-taught the Peak Day algorithm to that identified using a blinded home fertility monitor

Sensitivity Analysis

- Compared monitor results to
 - Peak Day Algorithm
 - Modified Peak Day Algorithm (accounts for fluid quality)
 - Day 14 ovulation
 - Knaus-Ogino Method

Conclusion

Peak Day is a novel and resource-efficient method for _prospective_ determination of ovulation.

Compared to home urine monitoring of LH, Peak Day detects ovulation +/-2 days with 81% sensitivity.

Allows for prospective environmental monitoring timed to periconceptional period and developmental windows rather than exposure recall.

Peak Day not precise enough for clinical diagnosis but identifying a 5-day window for ovulation is more precise than typical methods for population-based studies.

Acknowledgements

Primary Children’s Medical Center Foundation, Innovative Research Grants
University of Utah Department of Family and Preventive Medicine, Health Studies Fund
Thanks to SPD Swiss Precision Diagnostic for developing the blinded monitors