Botulinum Toxins Review

Katharine E Alter MD

Medical Director, Rehabilitation Programs, Mount Washington Pediatric Hospital, Baltimore Maryland

Medical Director, Functional and Applied Biomechanics Section, Rehabilitation Medicine, National Institutes of Health, Bethesda Maryland
Disclosures

- Consultant fees, Allergan
- Speakers Bureau, Neurotoxins Institute
- Clinical Research Training Grant, American Academy of Cerebral Palsy and Developmental Medicine
Lecture Objectives

• Review the history of botulinum toxins (BoNT)
• Describe the mechanism of action of BoNT at the motor neuron
• Discuss pharmacologic differences observed with the currently available BoNT preparations
• Introduce the clinical utility of botulinum toxin
Botulinum Toxin Timeline

*Manufactured by Solstice Neurosciences, Inc. since 2004.

C. botulinum 1700’s-1800’s

900 kD Complex

E. Schantz 1944

1968

A. Scott

1944

1970’s -80’s

Strabismus
Blepharospasm

1970’s -80’s

Allergan
BOTOX® Cosmetic 2002

2009-2011:
Dysport, Xeomin: CD
Botox: Spasticity

Allergan
BOTOX® 1989

Solstice*
Myobloc® / NeuroBloc® 2000

1° Axillary HH 2004

2004

Ipsen
Dysport® 1991

2009

Dysport, Xeomin: CD
Botox: Spasticity

*Manufactured by Solstice Neurosciences, Inc. since 2004.
BoNT

• A biological product of the bacterium *Clostridium botulinum*\(^1\)

• Treatment for focal and multifocal muscle overactivity in the UMN syndrome \(^2\) and other conditions

• Seven botulinum toxin serotypes (A-G)\(^1\)

• Only types A and B are available for clinical use\(^3\)

Botulinum Toxin: Worldwide Available Preparations

• Botulinum toxin type A Preparations: World Wide
 – BOTOX®; Allergan, Inc.
 – Dysport®; Ipsen Pharmaceuticals¹
 – Xeomin®; Merz
 – Puretox, Mentor
 – Reloxin, Europe
 – BTXA, China

• Botulinum toxin type B (Serotypes)
 – Myobloc®/NeuroBloc®*; Solstice Neurosciences)¹
 – Licensed for distribution in the US, Europe, and Japan

• Preparations are different and units are not interchangeable¹,²:
 – Different strains of C. botulinum used in manufacturing process
 – Purification and formulation methods differ

*Brand name in Europe.
In 2009 the FDA revised prescribing information for all FDA licensed BoNT preparations

- **A Boxed Warning was added to all BoNTs**
 - Highlighting the possibility potentially life-threatening distant spread of toxin effect after local injection.
 - A Risk Evaluation and Mitigation Strategy (REMS) was added to include a *Medication Guide* for patients understand detailing risks/benefits of BoNT

- To reinforce the differences in toxin potency and reduce potential for dosing errors the FDA established unique generic drug names for each toxin

- The new established names reinforce these differences and the lack of interchangeability among products.

- Units/dosing are specific to each BoNT product
 - The practice of using conversion tables between toxins is not recommended
 - Dose or units of biological activity cannot be compared or converted between products.
BoNTs: U.S. Preparations: FDA Unique Generic Names & Indications (2011)

- **OnaBotulinumtoxinA (BOTOX®; Allergan, Inc.)**\(^1\)
 - Licensed for distribution worldwide
 - Indications: Cervical dystonia, strabismus, blepharospasm, hemifacial spasm, hyperhidrosis; post stroke spasticity, overactive bladder, improved appearance of glabellar lines

- **AboBotulinumtoxinA (Dysport®; Ipsen Pharmaceuticals)**\(^1\)
 - Licensed for distribution in the USA, UK and Europe
 - Indication: Cervical dystonia. In clinical trials in USA for other conditions

- **IncoBotulinumtoxinA (Xeomin®; Merz)**
 - Licensed for distribution in Europe, US
 - Indication: Cervical dystonia, blepharospasm, glabellar Lines

- **RimaBotulinumB (Myobloc®/NeuroBloc®*; Solstice Neurosciences)**\(^1\)
 - Licensed for distribution in the US, Europe, and Japan
 - Indication: Cervical dystonia

*Brand name in Europe.
Reported Uses Clinical Applications of BoNTs

- **Abnormal Muscular Contractions**
 - Strabismus\(^1\)
 - Cerebral palsy
 - Multiple sclerosis
 - Spasticity (Post-CVA or TBI)
 - Spastic bladder (OAB, detrusor)
 - Achalasia (esophageal)
 - Chronic anal fissures,

- **Other Applications**
 - Hyperhidrosis\(^1\)
 - Migraine & tension-type HA
 - Myofascial pain
 - Sialorrhea
 - Obesity
 - GU: OAB, BPH, sphincter dyssnergia

- **Focal Dystonias**
 - Blepharospasm\(^1\)
 - Cervical dystonia\(^1,2\)
 - Oromandibular facial-lingual
 - Spasmodic dysphonia
 - Task-specific (Writer’s Cramp)

- **Other Involuntary Movements**
 - Voice, head, and limb tremor
 - VII nerve facial spasm disorder\(^1\)
 - Hemifacial spasm
 - Palatal myoclonus
 - Tics

1. FDA-approved use for BOTOX®
2. FDA-approved for Myobloc®
Mechanism of Action

• All botulinum toxins
 – Work presynaptically
 – Block the release of acetylcholine
 – Cause graded amount of weakness depending on dose of toxin used

• Different serotypes have different
 – Intracellular targets
 – Duration of effect
 – “Potency”
Structure of Botulinum Toxin

- Light Chain (50kDa)
- Heavy Chain (100kDa)

Total complex size: 500-900kD
Neurotoxin Component: 150kD

Associated (Accessory) Proteins:
- HA
- NTNH
Mechanism of Action

Types A and B bind to distinct acceptors

- Botulinum Type A cleaves SNAP-25
- Botulinum Type B cleaves synaptobrevin (VAMP)

Hallett NEJM 1999;341 (2): 118
Normal Innervation
BoNT: Binding/Endocytosis
Light Chain Cleavage/Translocation
BoNT: SNARE Protein Cleavage
Denervation/Reinnervation
Botulinum Neurotoxins: Clinical Differentiation

<table>
<thead>
<tr>
<th>Complex Size</th>
<th>Target Protein</th>
<th>Amount of Protein</th>
<th>Reconstituted pH</th>
<th>Final Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 kD</td>
<td>SNAP-25</td>
<td>5 ng/100U</td>
<td>Neutral</td>
<td>Vacuum Extraction</td>
</tr>
<tr>
<td>~900 kD</td>
<td>SNAP-25</td>
<td>12.5 ng/500U</td>
<td>Neutral</td>
<td>Lyophilization</td>
</tr>
<tr>
<td>~150 kD</td>
<td>SNAP-25</td>
<td>0.6 ng/100U</td>
<td>Neutral</td>
<td>Lypholization</td>
</tr>
<tr>
<td>500-700 kD</td>
<td>VAMP</td>
<td>50 ng/5000U</td>
<td>5.6</td>
<td>Solution</td>
</tr>
</tbody>
</table>

*Allergan, Inc-Botox® Package Insert. †Solstice Neurosciences-Myobloc™ Package Insert. ‡Ipsen Ltd-Dysport® Package Insert.
BoNT Storage and Dilution

• Onabotulinumtoxin A/Botox® is available in 100 unit vials. 1 vial is diluted with 1, 2, 4, or 8 mL of preservative-free 0.9% saline, yielding preparations of 10.0, 5.0, 2.5, or 1.25 units / 0.1 mL, respectively. Reconstituted Botox® should be used within 24 hours and stored at 2º - 8º C (200 unit vials available).

• AbobotulinumtoxinA/Dysport™ is available in 300 or 500 unit vials. For CD, one 500-unit vial is diluted with 1 mL preservative-free 0.9% saline, yielding a preparation of 500 units/mL. Reconstituted Dysport™ should be used within 4 hours and should be stored at 2º to 8º C

• IncobotulinumtoxinA/Xeomin BoNT-A® is available in 50 and 100 unit vials and reconstituted with 0.9% saline. Reconstituted Xeomin™ should be used within 24 hours and should be stored at 2º to 8º C. Unopened vials can be stored at room temperature, refrigerated or frozen.

• BoNT-B formulated as Myobloc® is supplied as a sterile injectable solution at a concentration of 5,000 units/mL. Vials contain 0.5 mL (2500 units), 1.0 mL (5000 units), or 2.0 mL (10,000 units)
Differences in Serotype Pharmacology: Clinical Considerations

- Toxin Subtype
- Differences
- Complex size
- Protein load
- Diffusion characteristics
- Intracellular target
- Activation level

Different Therapeutic Profile
- Dose
- Duration
- Migration
- Safety
- Antigenicity
BoNT: Clinical Effects on Muscle Overactivity

- Onset usually within 3 to 5 days; maximum effect at approximately 4 weeks

- Clinical benefit usually >12 weeks; may be extended with adjunctive therapy

- Can be used in conjunction with phenol, surgery, oral medications, intrathecal baclofen, and other rehabilitation modalities

The Basis for Botulinum Toxin Use in Pain

• Pain improvement was noted in initial dystonia and spasticity studies

• Brin 1986 series: cervical dystonia:
 – 64% motor improvement
 – 74% pain improvement

Facial expression of pain drawn by Sir Charles Bell (From: The Anatomy and Philosophy of Expression: as Connected with the Fine Arts. 5th ed. London: Henry G. Bohn, 1865)

http://www.library.ucla.edu/libraries/biomed/his/PainExhibit/panel3.htm
Regulated Exocytosis Multiple Neurotransmitters/Neuropeptides Released From Vesicle

Adapted from *Trends in Cell Biology*, July 1997.
Goals/Clinical Benefits of BoNT Treatment of UMNS

- Improved passive and active function: better mobility, activity, daily function, and independence
- Increased patient comfort: less pain, better limb positioning for sitting and sleeping
- Reduced disfigurement
- Prevention or delay of musculoskeletal complications
- Improved quality of life and increased well-being
- Reduced burden of care
Summary Guidelines for BoNT Injection

- Determine which muscles need to be injected
- Determine the appropriate dosage and the number and volume of injections per session
- Use the smallest effective total dose and volume
- Use appropriate techniques to achieve precise injection and reduce the risk of complications
 - For limb muscles, use of electromyography (EMG) guidance or electrical stimulation may be helpful in identifying specific muscles (eg, smaller muscles such as flexor digitorum sublimis)
BoNT Technical Considerations

• Dose calculation: It may be more relevant to consider muscle mass, degree of spasticity, and patient body weight than the disease for dose calculation.

• Administration: BoNT is administered by intramuscular injection with relatively contained diffusion and avid binding to endplates of the motor neuron and muscle spindle.

• Injection technique: Methods of target muscle localization include the anatomical method, electromyographic guidance, electrical stimulation, and ultrasound.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic approach</td>
<td>• No equipment needed
• Some muscles are accurately, quickly, and easily isolated</td>
<td>• Accuracy may be a problem
 – Examiner inexperience
 – Anatomic variation
 – Anatomic rearrangement
 • Due to spasticity, contractures, deformity, surgery
 – Difficulty isolating deep or overlapping muscles
 – Requires patient cooperation
 • Impaired motor control may cause difficulties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EMG signal falsely attributed to target muscle
 – Co-contraction, mass synergy
 – Impaired selective motor control may cause difficulties
 – Anatomic variations/rearrangements due to spasticity, surgery, deformities
 • Requires patient cooperation
 • Impaired motor control
 • May require sedation in children
 • Uses larger needle/more painful</td>
</tr>
<tr>
<td>EMG</td>
<td>• EMG is widely available
• Amplifier boxes are inexpensive
• Clinician familiarity with EMG
• Provides auditory feedback for needle localization and muscle activity</td>
<td></td>
</tr>
</tbody>
</table>
Techniques for BoNT Injections

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Electrical stimulation | • Equipment is inexpensive, widely accessible
• May be more accurate than EMG
• Some muscles are quickly and easily isolated | • Requires stimulator or EMG machine
• Time-consuming/cost
• Pain
• Requires patient cooperation
• Anatomic variations/ rearrangement due to spasticity, contracture, surgery may cause problems with accuracy
• Difficult to isolate deep or overlapping muscles |
| Ultrasound | • Improved accuracy
• Involuntary muscle activity limits muscle localization with recruitment
 – Visualize target muscle with/without AROM* | • Equipment availability
• Cost
• Steep learning curve for clinicians |

Some Side Effects of BoNTs

- Weakness
 - Local: most important is dysphagia
 - Systemic: minimal weakness, malaise

- Autonomic effects
 - Dry mouth, constipation

- Local effects
 - Pain, hematoma, infection, rash

- Antibodies (subsequent resistance)
Some Examples of Equipment for Specific Muscles

<table>
<thead>
<tr>
<th>Target Muscle</th>
<th>Needle Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craniofacial muscles</td>
<td>30-gauge, 0.5 inch</td>
</tr>
<tr>
<td>Superficial muscles, upper back</td>
<td>25- to 27-gauge, 1- to 1.5-inch</td>
</tr>
<tr>
<td>Scalenes</td>
<td>1.5-inch, 26- or 27-gauge, injectable, monopolar electrode</td>
</tr>
<tr>
<td>Deep compartment muscles of the lumbosacral region</td>
<td>Longer injectable monopolar electrode needles, 100 to 120 mm or longer spinal needles</td>
</tr>
</tbody>
</table>
BoNT Injection

- Administered by intramuscular injection\(^1\)
- Smaller muscles require only 1 injection site within the belly of the muscle\(^2\)
- For larger, longer, or wider muscles it is best to inject at 2 to 4 injection sites\(^2\)

Nonresponse to BoNT Therapy

- Primary nonresponder: no response to initial injection
- Secondary nonresponder: relative or complete loss of efficacy at subsequent injections
- Reasons for nonresponse
 - Inadequate muscle injection technique
 - Inappropriate muscle selection
 - Dose may be too low
 - Change in pattern of muscle involvement
 - Soft tissue contracture
 - Neutralizing antibodies may be present (but in spasticity, rare)
- Tests for nonresponse: frontalis test, antibody assays (limited sensitivity, specificity)

BoNT: Resistance/Antibody Formation

- **Avoiding resistance**
 - Extend treatment interval as long as possible with at least 3 months between treatments
 - Avoid “booster” or “touch up” injections

- **Factors that influence antibody formation**
 - Toxin dose
 - Duration of treatment and frequency of injections
 - A prior immunoreistance to another BoNT serotype
 - Amount of protein load
 - Antigen quality and amount

Why Are Neutralizing Antibodies Important?

- Loss of therapeutic effect
 - Patients must seek alternatives that are less effective or are associated with more adverse events

- Therefore, it is important to minimize risk of antibody formation

- Use lowest dose in units
 - Less neurotoxin protein load (ng)1,2

- Use longest interval between injections1,2
 - This will be determined by the duration of effect

Post BoNT Injection Instructions

• Explain that effect of BoNT will be evident in 3 to 7 days

• Initiate aggressive stretching of injected muscles, may include splinting and bracing

• Initiate strengthening of opposing muscles

• Functional retraining with therapist

• No re-injection of any BoNT for at least 90 days
BoNT may be useful for treating a wide variety of conditions by toxin mediated reduction in neurotransmitter release. This includes blocking of acetylcholine at the
- NMJ of muscles
- Muscle spindles
- Neur glandular junction

Antinociceptive effects of BoNTs may be due to
- Direct effects of the toxin i.e. reduced release of pain neurotransmitters
- Indirect effects of reduced muscle contraction/spasm

Commercially available BoNTs are non-interchangeable