Jerry E. Mellem, Jr., PhD

Languages

  • English

Academic Information

  • Departments: Neurobiology & Anatomy - Research Associate Professor

Email: mellem@neuro.utah.edu

Research Statement

The main focus of my research is to gain a mechanistic understanding of how the nervous system regulates behavior. Addressing this question can be difficult largely due to the complexity of vertebrate nervous systems. Therefore, we have chosen to study this problem in the nematode Caenorhabditis elegans given its relatively simple nervous system. In addition, its amenability to genetic manipulation and imaging techniques, as well as a large range of quantifiable behaviors make C. elegans an ideal tool to link genes, neural circuits and behavior. We are specifically interested in how ionotropic glutamate receptors (iGluRs) modify neural circuit activity. To achieve this goal, I have developed a repertoire of advanced electrophysiological techniques in the worm to characterize iGluRs and their associated auxiliary proteins. Ultimately, I would like to determine how iGluRs localized to specific synapses contribute to electrical activity of a cell and how this activity regulates learning and memory.

Education History

Type School Degree
Undergraduate Montana State University
Psychology and Biology
B.S.

Selected Publications

Journal Article

  1. Lei N, Mellem JE, Brockie PJ, Madsen DM, Maricq AV (2017). NRAP-1 Is a Presynaptically Released NMDA Receptor Auxiliary Protein that Modifies Synaptic Strength. Neuron, 96(6), 1303-1316.e6.
  2. Hoerndli FJ, Wang R, Mellem JE, Kallarackal A, Brockie PJ, Thacker C, Madsen DM, Maricq AV (2015). Neuronal Activity and CaMKII Regulate Kinesin-Mediated Transport of Synaptic AMPARs. Neuron, 86(2), 457-74.
  3. Hoerndli FJ, Maxfield DA, Brockie PJ, Mellem JE, Jensen E, Wang R, Madsen DM, Maricq AV (2013). Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Accompanying Neuron Preview: Rongo C. (2013) Going mobile: AMPA receptors move synapse to synapse in vivo, 80:1339-41. Neuron, 80(6), 1421-37.
  4. Brockie PJ, Jensen M, Mellem JE, Jensen E, Yamasaki T, Wang R, Maxfield D, Thacker C, Hoerndli F, Dunn PJ, Tomita S, Madsen DM, Maricq AV (2013). Cornichons control ER export of AMPA receptors to regulate synaptic excitability. Neuron, 80(1), 129-42.
  5. Wang R, Mellem JE, Jensen M, Brockie PJ, Walker CS, Hoerndli FJ, Hauth L, Madsen DM, Maricq AV (2012). The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors. Neuron, 75(5), 838-50.
  6. Wang R, Walker CS, Brockie PJ, Francis MM, Mellem JE, Madsen DM, Maricq AV (2008). Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron, 59(6), 997-1008.
  7. Mellem JE, Brockie PJ, Madsen DM, Maricq AV (2008). Action potentials contribute to neuronal signaling in C. elegans. Nat Neurosci, 11(8), 865-7.
  8. Kano T, Brockie PJ, Sassa T, Fujimoto H, Kawahara Y, Iino Y, Mellem JE, Madsen DM, Hosono R, Maricq AV (2008). Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Curr Biol, 18(13), 1010-5.
  9. Walker CS, Brockie PJ, Madsen DM, Francis MM, Zheng Y, Koduri S, Mellem JE, Strutz-Seebohm N, Maricq AV (2006). Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc Natl Acad Sci U S A, 103(28), 10781-6.
  10. Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Walker CS, Francis MM, Maricq AV (2006). SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 103(4), 1100-5.
  11. Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV (2004). The Rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell, 123(1), 119-32.
  12. Aronoff R, Mellem JE, Maricq AV, Sprengel R, Seeburg PH (2004). Neuronal toxicity in Caenorhabditis elegans from an editing site mutant in glutamate receptor channels. J Neurosci, 24(37), 8135-40.
  13. Grunwald ME, Mellem JE, Strutz N, Maricq AV, Kaplan JM (2004). Clathrin-mediated endocytosis is required for compensatory regulation of GLR-1 glutamate receptors after activity blockade. Proc Natl Acad Sci U S A, 101(9), 3190-5.
  14. Zheng Y, Mellem JE, Brockie PJ, Madsen DM, Maricq AV (2003). SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature, 427(6973), 451-7.
  15. Francis MM, Mellem JE, Maricq AV (2003). Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci, 26(2), 90-9.
  16. Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV (2002). Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Dispatch (Review and Commentary) Chao MY, Hart AC. (2003) Sensory biology: how the nose knows. Curr Biol 13:R226-28. Neuron, 36(5), 933-44.
  17. Brockie PJ, Mellem JE, Hills T, Madsen DM, Maricq AV (2001). The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron, 31(4), 617-30.
  18. Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV (2001). Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci, 21(5), 1510-22.
  19. Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV (1999). Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron, 24(2), 347-61.