Bradley R. Cairns, PhD

Chair, Department of Oncological Sciences

Research Interests

  • Cancer Biology
  • DNA Methylation
  • Zebrafish
  • Transcription Factors
  • Chromatin


Lab Website


  • English

Academic Information

  • Departments: Biochemistry - Adjunct Professor, Oncological Sciences - Professor
  • Cancer Center Programs: Nuclear Control of Cell Growth & Differentiation

Academic Office Information

  • 801-585-1822
  • Huntsman Cancer Institute
    2000 Circle of Hope, Room: 4380
    Salt Lake City, UT 84112

Research Statement

Cancer is a disease involoving improper cell growth, death and differentiation. My research focuses on determining - at the mechanistic level - how a cell normally regulates processes important to cancer such as transcription.

Academic Bio

Biography: Dr. Cairns received his B.S. (Honors) in Chemistry from Lewis and Clark College in Portland, Oregon in 1987. He conducted his graduate work at Stanford with Nobel Laureate Roger Kornberg PhD on both signal transduction and chromatin remodeling. He received his PhD in Cell Biology from Stanford in 1996, and also conducted an early phase of postdoctoral training (funding from the American Cancer Society). Dr. Cairns received formal postdoctoral training with Fred Winston PhD in the Department of Genetics at Harvard Medical School (funding from the Leukemia Society of America), where he continued to study chromatin remodeling complexes. In 1998, he joined the faculty of the Department of Oncological Sciences and the Huntsman Cancer Institute. In 2000, he was appointed as an Investigator with the Howard Hughes Medical Institute. He is currently Professor and Chair of the Department of Oncological Sciences, and is the Jon and Karen Huntsman Presidential Professor of Cancer Research and Senior Director of Basic Science at the Huntsman Cancer Institute – both within the University of Utah, School of Medicine. He is Co-Leader of the Nuclear Control of Cell Growth and Differentiation Program.Research: The Cairns lab strives to understand chromatin-transcription relationships, with an emphasis on development and cancer, and effectively utilizes biochemistry, genetics, and genomics. The areas/questions the lab addresses includes 1) Chromatin remodeling: How are nucleosomes moved and ejected by chromatin-remodeling complexes, and how is this progress misregulated in cancer? 2) Germline and embryo gene packaging: Are genes important for embryo development (and oncogenesis) packaged in special chromatin structures while in the germline and what is their fate and impact in the embryo? 3) DNA methylation/demethylation: What are the mechanisms of DNA and RNA methylation/demethylation, and how are they regulated and applied in development and cancer? 4) RND Modification: What is the scope and function of RNA methylation and pseudouridylation in humans? Current Administrative Positions: Senior Directors of Basic Science, Huntsman Cancer Institute. Chairman, Department of Oncological Sciences. Co-Leader, Cancer Center Nuclear Control of Cell Growth and Differentiation Program, Huntsman Cancer Institute. Chair, High-Throughput Genomics Core. Chair, Bioinformatics Core. Chair, Research Informatics Core. Teaching: Dr. Cairns teaches in the Gene Expression core course, and has taught many specialty chromatin course. He organizes a weekly transcription journal club and has mentored 23 PhD students. Service: Dr. Cairns is a standing member of the NIH Panel Molecular Genetics B Study Section (2008-2012). He is also the organizer of FASEB, ASBMB and Keystone conferences. Dr. Cairns is on the editorial board of Molecular Cell and Developmental Cell.

Education History

Type School Degree
Postdoctoral Fellowship Harvard Medical School - Fred Winston, PhD
Postdoctoral Fellow
Postdoctoral Fellowship Stanford University - Roger Kornberg, PhD
Structural Biology
Postdoctoral Fellow
Doctoral Training Stanford University - Roger Kornberg, PhD
Cell Biology
Undergraduate Lewis and Clark College
Chemistry (honors)

Selected Publications

Journal Article

  1. Parnell T J, Schlicter A, Wilson B G, Cairns B R (Spring 2015). The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife, 4, e06073.
  2. Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR (2014). Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell, 15(2), 239-53.
  3. Khoddami V, Cairns BR (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol, 31(5), 458-64.
  4. Potok ME, Nix DA, Parnell TJ, Cairns BR (2013). Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell, 153(4), 759-72.
  5. Oler AJ, Cairns BR (2012). PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. EMBO J, 31(6), 1440-52.
  6. Clapier CR, Cairns BR (2012). Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature, 492(7428), 280-4.
  7. Wu SF, Zhang H, Cairns BR (2011). Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res, 21(4), 578-89.
  8. Sirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y (2011). The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J, 30(12), 2364-72.
  9. Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, Cassiday PA, Nelson CA, Hagedorn CH, Graves BJ, Cairns BR (2010). Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol, 17(5), 620-8.
  10. Rai K, Sarkar S, Broadbent TJ, Voas M, Grossmann KF, Nadauld LD, Dehghanizadeh S, Hagos FT, Li Y, Toth RK, Chidester S, Bahr TM, Johnson WE, Sklow B, Burt R, Cairns BR, Jones DA (2010). DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell, 142(6), 930-42.
  11. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460(7254), 473-8.
  12. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell, 135(7), 1201-12.
  13. Dutrow N, Nix DA, Holt D, Milash B, Dalley B, Westbroek E, Parnell TJ, Cairns BR (2008). Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. Nat Genet, 40(8), 977-86.
  14. Szerlong H, Hinata K, Viswanathan R, Erdjument-Bromage H, Tempst P, Cairns BR (2008). The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol, 15(5), 469-76.
  15. VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns BR (2007). Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell, 27(5), 817-28.
  16. Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR (2007). Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev, 21(3), 261-6.
  17. Roberts DN, Wilson B, Huff JT, Stewart AJ, Cairns BR (2006). Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol Cell, 22(5), 633-44.
  18. Soutourina J, Bordas-Le Floch V, Gendrel G, Flores A, Ducrot C, Dumay-Odelot H, Soularue P, Navarro F, Cairns BR, Lefebvre O, Werner M (2006). Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol, 26(13), 4920-33.
  19. Zhang H, Roberts DN, Cairns BR (2005). Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell, 123(2), 219-31.
  20. Saha A, Wittmeyer J, Cairns BR (2005). Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol, 12(9), 747-55.


  1. Kasten MM, Clapier CR, Cairns BR (2011). SnapShot: Chromatin remodeling: SWI/SNF. [Review]. Cell, 144(2), 310.e.l..
  2. Cairns BR (2009). The logic of chromatin architecture and remodelling at promoters. [Review]. Nature, 461(7261), 193-8.