Skip to main content
Dan J. Kadrmas

Dan J. Kadrmas, PhD

Languages spoken: English

Academic Information

Departments Emeritus - Radiology & Imaging Sciences

Academic Office Information

Dan.Kadrmas@hsc.utah.edu

Research Interests

  • PET-Based Tumor Imaging
  • Tumor Specific PET Probes
  • Tomography
  • Tomography, Emission-Computed
  • Tomography, Emission-Computed, Single-Photon
  • Diagnostic Imaging
  • Imaging, Three-Dimensional
  • Radionuclide Imaging
  • Positron Emission Tomography (PET)

Dan Kadrmas, PhD, is a professor in the Department of Radiology and Imaging Sciences at the University of Utah, an investigator in the Huntsman Cancer Institute, and a member of the Experimental Therapeutics Program. Kadrmas is also director of the Quantitative and Functional PET/CT Laboratory.

Kadrmas researches imaging technologies, particularly the use of positron emission technology (PET) imaging to study multiple aspects of tumor physiology, glucose metabolism, blood flow, hypoxia, and growth in various types of cancer.

Kadrmas received a master's degree from the University of Iowa and a PhD from the University of North Carolina, Chapel Hill.

Education History

Postdoctoral Fellowship University of Utah School of Medicine, Department of Radiology, Medical Imaging Research Laboratory
Postdoctoral Fellow
University of North Carolina
Fellow
Doctoral Training University of North Carolina
PhD
University of Iowa, Department of Physics
Fellow
Graduate Training University of Iowa
MS
Gustavus Adolphus College
BA

Selected Publications

Journal Article

  1. S Ashrafinia, H Mohy-ud-Din, NA Karakatsanis, AK Jha, ME Casey, DJ Kadrmas, and A Rahmim (2017). Generalized PSF Modeling for Optimized Quantitation in PET Imaging. Phys Med Biol, 62(12), 5149-5179.
  2. Ashrafinia S, Mohy-Ud-Din H, Karakatsanis NA, Jha AK, Casey ME, Kadrmas DJ, Rahmim A (2017). Generalized PSF modeling for optimized quantitation in PET imaging. Phys Med Biol, 62(12), 5149-5179. (Read full article)
  3. Morey AM, Kadrmas DJ (2013). Effect of varying number of OSEM subsets on PET lesion detectability. J Nucl Med Technol, 41(4), 268-73. (Read full article)
  4. Kadrmas DJ, Oktay MB (2013). Generalized separable parameter space techniques for fitting 1K-5K serial compartment models. Med Phys, 40(7), 072502. (Read full article)
  5. Kadrmas DJ, Rust TC, Hoffman JM (2013). Single-scan dual-tracer FLT+FDG PET tumor characterization. Phys Med Biol, 58(3), 429-49. (Read full article)
  6. Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ (2012). Effect of Scan Time on Oncologic Lesion Detection in Whole-Body PET. IEEE Trans Nucl Sci, 59(5), 1940-1947. (Read full article)
  7. Zeng GL, Hernandez A, Kadrmas DJ, Gullberg GT (2012). Kinetic parameter estimation using a closed-form expression via integration by parts. Phys Med Biol, 57(18), 5809-21. (Read full article)
  8. Zeng GL, Kadrmas DJ, Gullberg GT (2012). Fourier domain closed-form formulas for estimation of kinetic parameters in reversible multi-compartment models. Biomed Eng Online, 11, 70. (Read full article)
  9. Enslow MS, Zollinger LV, Morton KA, Butterfield RI, Kadrmas DJ, Christian PE, Boucher KM, Heilbrun ME, Jensen RL, Hoffman JM (2012). Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma. Clin Nucl Med, 37(9), 854-61. (Read full article)
  10. Zeng GL, Gullberg GT, Kadrmas DJ (2010). Closed-form kinetic parameter estimation solution to the truncated data problem. Phys Med Biol, 55(24), 7453-68. (Read full article)
  11. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, Conti M, Panin VY, Kadrmas DJ, Townsend DW (2010). An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med, 51(2), 237-45. (Read full article)
  12. Black NF, McJames S, Kadrmas DJ (2009). Rapid Multi-Tracer PET Tumor Imaging With F-FDG and Secondary Shorter-Lived Tracers. IEEE Trans Nucl Sci, 56(5), 2750-2758. (Read full article)
  13. Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009). Impact of time-of-flight on PET tumor detection. J Nucl Med, 50(8), 1315-23. (Read full article)
  14. Kadrmas DJ, Casey ME, Black NF, Hamill JJ, Panin VY, Conti M (2009). Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes. IEEE Trans Med Imaging, 28(4), 523-34. (Read full article)
  15. Pack NA, DiBella EV, Rust TC, Kadrmas DJ, McGann CJ, Butterfield R, Christian PE, Hoffman JM (2008). Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method. J Cardiovasc Magn Reson, 10, 52. (Read full article)
  16. Kadrmas DJ (2008). Rotate-and-slant projector for fast LOR-based fully-3-D iterative PET reconstruction. IEEE Trans Med Imaging, 27(8), 1071-83. (Read full article)
  17. Black NF, McJames S, Rust TC, Kadrmas DJ (2008). Evaluation of rapid dual-tracer (62)Cu-PTSM + (62)Cu-ATSM PET in dogs with spontaneously occurring tumors. Phys Med Biol, 53(1), 217-32. (Read full article)
  18. Rust TC, DiBella EV, McGann CJ, Christian PE, Hoffman JM, Kadrmas DJ (2006). Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows. Phys Med Biol, 51(20), 5347-62. (Read full article)
  19. Rust TC, Kadrmas DJ (2006). Rapid dual-tracer PTSM+ATSM PET imaging of tumour blood flow and hypoxia: a simulation study. Phys Med Biol, 51(1), 61-75. (Read full article)
  20. Kadrmas DJ, Rust TC (2005). Feasibility of Rapid Multi-Tracer PET Tumor Imaging. IEEE Trans Nucl Sci, 52(5), 1341-47.
  21. Kadrmas DJ (2004). LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol, 49(20), 4731-44. (Read full article)
  22. Rust TC, Kadrmas DJ (2003). Survey of parallel slat collimator designs for hybrid PET imaging. Phys Med Biol, 48(6), N97-104. (Read full article)
  23. Kadrmas DJ, Rust TC (2003). Converging Slat Collimators for PET Imaging with Large-Area Detectors. IEEE Trans Nucl Sci, 50(1), 17-23.
  24. Kadrmas DJ, Christian PE (2002). Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med, 43(11), 1545-54. (Read full article)
  25. Di Bella EV, Kadrmas DJ, Christian PE (2001). Feasibility of dual-isotope coincidence/single-photon imaging of the myocardium. J Nucl Med, 42(6), 944-50. (Read full article)
  26. Khare HS, Dibella EV, Kadrmas DJ, Christian PE, Gullberg GT (2001). Comparison of Static and Dynamic Cardiac Perfusion Thallium-201 SPECT. IEEE Trans Nucl Sci, 48(3), 774. (Read full article)
  27. Kadrmas DJ, Gullberg GT (2001). 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior. Phys Med Biol, 46(5), 1553-74. (Read full article)
  28. Di Bella EV, Ross SG, Kadrmas DJ, Khare HS, Christian PE, McJames S, Gullberg AG (2001). Compartmental modeling of technetium-99m-labeled teboroxime with dynamic single-photon emission computed tomography: comparison with static thallium-201 in a canine model. Invest Radiol, 36(3), 178-85. (Read full article)
  29. Di Bella EV, Khare HS, Kadrmas DJ, Gullberg GT (2000). SPECT Imaging of Teboroxime during Myocardial Blood Flow Changes. IEEE Trans Nucl Sci, 47(3), nihpa165910. (Read full article)
  30. Kadrmas DJ, Di Bella EV, Khare HS, Christian PE, Gullberg GT (2000). Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines. IEEE Trans Nucl Sci, 47(3), 1112-1117. (Read full article)
  31. Kadrmas DJ, DiBella EV, Huesman RH, Gullberg GT (1999). Analytical propagation of errors in dynamic SPECT: estimators, degrading factors, bias and noise. Phys Med Biol, 44(8), 1997-2014. (Read full article)
  32. Kadrmas DJ, Frey EC, Tsui BM (1999). Simultaneous technetium-99m/thallium-201 SPECT imaging with model-based compensation for cross-contaminating effects. Phys Med Biol, 44(7), 1843-60. (Read full article)
  33. Bai C, Zeng GL, Kadrmas DJ, Gullberg GT (1999). A Study of Apparent Apical Defects in Attenuation Corrected Cardiac SPECT. IEEE Trans Nucl Sci, 46(6), 2104-10.
  34. Hichwa RH, Kadrmas DJ, Watkins GL, Wollenweber SD, Maniam S, Boles Ponto LL, Richmond JCW, Koeppel JA (1995). Vanadium-48: A Renewable Source for Transmission Scanning with PET. Nucl Instrum Methods Phys Res B, 99, 804-6.

Abstract

  1. Kadrmas DJ, Frey EC, Tsui BMW (1998). Evaluation of Bias and Noise Properties for Fast Iterative Reconstruction-Based Scatter Compensation [Abstract]. J Nucl Med, 39(5), 177P.
  2. Kadrmas DJ, Frey EC, Ziffer JA, Tsui BMW (1997). Iterative Reconstruction of Simultaneously Acquired Tc-99m Sestamibi / Tl-201 Cardiac SPECT Data with Compensation for Cross-Contaminating Effects [Abstract]. J Nucl Med, 38(5), 88P.
  3. Kadrmas DJ, Frey EC, Tsui BMW (1997). Effects of Improving Energy Resolution upon the Performance of Scatter Compensation Techniques in SPECT [Abstract]. J Nucl Med, 38(5), 89P.
  4. Kadrmas DJ, Frey EC, Tsui BMW (1995). Improved Signal-to-Noise Ratio in SPECT Images by Simultaneous Reconstruction from Multiple Overlapping Energy Windows [Abstract]. J Nucl Med, 36(5), 29P.
  5. Jang S, Jaszczak RJ, Kadrmas DJ, Greer KL, Coleman RE (1995). Effect of Breast Attenuation on Defect Size Measurement in Myocardial SPECT Imaging, [Abstract]. J Nucl Med, 36(5), 40P.

Patent

  1. Dan J. Kadrmas, M. Burgrahan Oktay (2016). REDUCED PARAMETER SPACE KINETIC MODELING. U.S. Patent No. US10,175,216. Washington, D.C.:U.S. Patent and Trademark Office.
  2. Dan J. Kadrmas (2011). ROTATE AND SLANT PROJECTOR FOR FAST FULLY-3D ITERATIVE TOMOGRAPHIC RECONSTRUCTION (divisional of US Patent 7,970,214). U.S. Patent No. 3. US Utility Patent 8,218,841. Washington, D.C.:U.S. Patent and Trademark Office.
  3. Dan J. Kadrmas, Edward V. R. DiBella, Noel F. Black, Thomas C. Rust (2010). RAPID MULTI-TRACER PET IMAGING SYSTEMS AND METHODS. U.S. Patent No. US Utility Patent 7,848,557. Washington, D.C.:U.S. Patent and Trademark Office.
  4. Dan J. Kadrmas (2007). ROTATE AND SLANT PROJECTOR FOR FAST FULLY-3D ITERATIVE TOMOGRAPHIC RECONSTRUCTION. U.S. Patent No. US Utility Patent 7,970,214. Washington, D.C.:U.S. Patent and Trademark Office.