Skip to main content
Frank Szulzewsky

Frank Szulzewsky, PhD

Languages spoken: English, French, German

Academic Information

Departments Primary - Neurosurgery , Adjunct - Oncological Sciences

Academic Office Information

Frank.Szulzewsky@hsc.utah.edu

Research Interests

  • Brain Tumors
  • Gene Fusion
  • Meningioma
  • Mouse Modeling
  • YAP1, TAZ, NTRK

Research Statement

The research of our lab is focused on the functions of oncogenic drivers found in several types of both pediatric and adult brain tumors, including Glioma, Meningioma, and Supratentorial (ST) Ependymoma. Pediatric and adult tumors can differ dramatically in their genetic markup and their underlying mutations. While adult cancers frequently harbor a highly aberrant genome with gains and losses of entire chromosomal regions, the genomes of pediatric cancers are oftentimes relatively more stable and are enriched for more defined mutations, such as gene fusions. Pediatric cancers that harbor targetable gene fusions are ideal candidates for targeted therapies. However, even though clinical trials targeting gene fusions have achieved promising initial responses (such as Larotrectinib in NTRK fusion positive tumors), these effects are usually only partial, and the tumors ultimately recur due to the occurrence of resistance mutations. Our lab utilizes genetically-engineered mouse models in order to study how specific oncogenes (such as gene fusions) drive tumor development, how these tumors respond to targeted therapies in vivo, and what mechanisms of resistance lead to treatment failure and tumor recurrence in order to develop novel adjuvant therapies that can increase treatment success and survival.

YAP1 gene fusions

YAP1 gene fusions frequently occur in rare cancers (often pediatric cancers) or subtypes of more common cancers. Our work was able to show that these fusions are strong oncogenic drivers and can induce the formation of tumors that resemble the human disease when expressed in mice. Different YAP1 fusions all exert strong YAP activity that is resistant to negative inhibition by the Hippo signaling pathway (a tumor suppressive protein cascade that inhibits the activity of wild type YAP1), and thereby constitute activating YAP mutations (Szulzewsky et al, 2020, Genes & Development; Szulzewsky et al, 2022, Genes & Development). In a subsequent project, we could show that the TFE3 domains and activity significantly contributes to the oncogenic functions of YAP1::TFE3 (Cimino et al, 2025, Scientific Reports).

YAP/TAZ activity in meningioma

We are investigating the role of oncogenic YAP/TAZ activity in low-grade versus high-grade NF2 mutant meningiomas. Around half of all meningiomas harbor mutations that result in the functional loss of NF2/Merlin, resulting in the deregulation of oncogenic YAP signaling. While low-grade NF2 mutant meningiomas harbor few recurrent additional mutations, high-grade tumors exhibit a highly aberrant genome with multiple concurrent mutations, as well as gains and losses of chromosomal regions. We could recently show that high-grade NF2 mutant meningiomas actively down-regulate oncogenic YAP activity, in part by overexpressing the YAP1 antagonist VGLL4 (Parrish et al, 2024, Neuro-Oncology Advances). We are aiming to understand why aggressive meningiomas downregulate YAP1 activity and what implications this has for the treatment of these tumors.

NTRK & ALK gene fusions in pediatric glioma

Gene fusions involving receptor tyrosine kinase genes (such as NTRK and ALK) are enriched in pediatric and infantile cancers, including pediatric glioma. Similar to other gene fusion-driven tumors, these cancers harbor few additional mutations (at least in treatment naïve tumors) and are mainly driven by the oncogenic activity induced by the gene fusion. Clinical trials with targeted agents directed at these gene fusions (such as Larotrectinib and Entrectinib against NTRK fusions) show high initial overall response rates, but ultimately fail due to the occurrence of resistant tumor cells. Using the RCAS/tv-a system for somatic cell gene transfer, we have developed several NTRK and ALK gene fusion-driven glioma mouse models (Schmid et al, 2024, Cell Reports). Treatment with tyrosine kinase inhibitors induces a rapid regression of these tumors, however, similar to the human disease, therapy-resistant persister cells ultimately lead to tumor recurrence. Several factors may contribute to therapy resistance, such as low drug penetration into the brain, tumor-microenvironment interactions, and the presence of drug efflux transporters. We are currently using these models to study the biology of these tumors and their response to targeted therapy, in order to ultimately overcome treatment resistance.

Education History

Postdoctoral Fellowship Fred Hutchinson Cancer Center
Postdoctoral Fellow
Postdoctoral Fellowship Max Delbrück Center for Molecular Medicine
Postdoctoral Fellow
Doctoral Training Freie Universität Berlin, Max Delbrück Center for Molecular Medicine
PhD
Diploma Technische Universität Berlin
Dipl-Ing

Selected Publications

Journal Article

  1. Sievers P, Arora S, Hielscher T, Savran D, Schrimpf D, Banan R, Vonhren D, Pusch S, Sill M, Appay R, Wirsching HG, Hortobagyi T, Dohmen H, Acker T, Kohlhof-Meinecke P, Schweizer L, Wefers AK, Harter PN, Hartmann C, Beschorner R, Schittenhelm J, Behling F, Tabatabai G, Mawrin C, Snuderl M, Maas SLN, Wesseling P, Brandner S, Korshunov A, Ratliff M, Krieg SM, Wick W, Jones DTW, Pfister SM, Holland EC, von Deimling A, Szulzewsky F, Sahm F (2025). Molecular signatures define BAP1-altered meningioma as a distinct CNS tumor with deregulation of Polycomb repressive complex target genes. Neuro Oncol, 27(9), 2326-2340. (Read full article)
  2. Cimino PJ, Keiser DJ, Parrish AG, Holland EC, Szulzewsky F (2025). C-terminal fusion partner activity contributes to the oncogenic functions of YAP1::TFE3. Sci Rep, 15(1), 32013. (Read full article)
  3. Kumar S, Jiang J, Donald-Paladino MS, Chen J, Gutierrez A, Federation AJ, Szulzewsky F, Holland EC, Ferguson FM, Nabet B (2025). Development of PROTACs for targeted degradation of oncogenic TRK fusions. bioRxiv. (Read full article)
  4. Henikoff S, Zheng Y, Paranal RM, Xu Y, Greene JE, Henikoff JG, Russell ZR, Szulzewsky F, Thirimanne HN, Kugel S, Holland EC, Ahmad K (2025). RNA polymerase II at histone genes predicts outcome in human cancer. Science, 387(6735), 737-743. (Read full article)
  5. Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Hill KD, Anderson LW, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F (2024). ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. Cell Rep, 43(10), 114829. (Read full article)
  6. Parrish AG, Szulzewsky F (2024). TRKing down drug resistance in NTRK fusion-positive cancers(†). J Pathol, 264(2), 129-131. (Read full article)
  7. Parrish AG, Arora S, Thirimanne HN, Rudoy D, Schmid S, Sievers P, Sahm F, Holland EC, Szulzewsky F (2024). Aggressive high-grade NF2 mutant meningiomas downregulate oncogenic YAP signaling via the upregulation of VGLL4 and FAT3/4. Neurooncol Adv, 6(1), vdae148. (Read full article)
  8. Thirimanne HN, Almiron-Bonnin D, Nuechterlein N, Arora S, Jensen M, Parada CA, Qiu C, Szulzewsky F, English CW, Chen WC, Sievers P, Nassiri F, Wang JZ, Klisch TJ, Aldape KD, Patel AJ, Cimino PJ, Zadeh G, Sahm F, Raleigh DR, Shendure J, Ferreira M, Holland EC (2024). Meningioma transcriptomic landscape demonstrates novel subtypes with regional associated biology and patient outcome. Cell Genom, 100566. (Read full article)
  9. Nuechterlein N, Shelbourn A, Szulzewsky F, Arora S, Casad M, Pattwell S, Merino-Galan L, Sulman E, Arowa S, Alvinez N, Jung M, Brown D, Tang K, Jackson S, Stoica S, Chittaboina P, Banasavadi-Siddegowda YK, Wirsching HG, Stella N, Shapiro L, Paddison P, Patel AP, Gilbert MR, Abdullaev Z, Aldape K, Pratt D, Holland EC, Cimino PJ (2024). Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype. Genes Dev, 38(5-6), 273-288. (Read full article)
  10. Chung CI, Yang J, Yang X, Liu H, Ma Z, Szulzewsky F, Holland EC, Shen Y, Shu X (2024). Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci U S A, 121(7), e2310430121. (Read full article)
  11. Chen Z, Giotti B, Kaluzova M, Vallcorba MP, Rawat K, Price G, Herting CJ, Pinero G, Cristea S, Ross JL, Ackley J, Maximov V, Szulzewsky F, Thomason W, Marquez-Ropero M, Angione A, Nichols N, Tsankova NM, Michor F, Shayakhmetov DM, Gutmann DH, Tsankov AM, Hambardzumyan D (2023). A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression. J Clin Invest, 133(22). (Read full article)
  12. Henikoff S, Henikoff JG, Ahmad K, Paranal RM, Janssens DH, Russell ZR, Szulzewsky F, Kugel S, Holland EC (2023). Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nat Commun, 14(1), 5930. (Read full article)
  13. Arora S, Szulzewsky F, Jensen M, Nuechterlein N, Pattwell SS, Holland EC (2023). Visualizing genomic characteristics across an RNA-Seq based reference landscape of normal and neoplastic brain. Sci Rep, 13(1), 4228. (Read full article)
  14. Hu X, Wu X, Berry K, Zhao C, Xin D, Ogurek S, Liu X, Zhang L, Luo Z, Sakabe M, Trubicka J, astowska M, Szulzewsky F, Holland EC, Lee L, Hu M, Xin M, Lu QR (2023). Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol, 25(2), 323-336. (Read full article)
  15. Pattwell SS, Arora S, Nuechterlein N, Zager M, Loeb KR, Cimino PJ, Holland NC, Reche-Ley N, Bolouri H, Almiron Bonnin DA, Szulzewsky F, Phadnis VV, Ozawa T, Wagner MJ, Haffner MC, Cao J, Shendure J, Holland EC (2022). Oncogenic role of a developmentally regulated NTRK2 splice variant. Sci Adv, 8(40), eabo6789. (Read full article)
  16. Szulzewsky F, Arora S, Arakaki AKS, Sievers P, Almiron Bonnin DA, Paddison PJ, Sahm F, Cimino PJ, Gujral TS, Holland EC (2022). Both YAP1-MAML2 and constitutively active YAP1 drive the formation of tumors that resemble NF2 mutant meningiomas in mice. Genes Dev, 36(13-14), 857-70. (Read full article)
  17. Ozawa T, Kaneko S, Szulzewsky F, Qiao Z, Takadera M, Narita Y, Kondo T, Holland EC, Hamamoto R, Ichimura K (2021). C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathol Commun, 9(1), 36. (Read full article)
  18. Ross JL, Chen Z, Herting CJ, Grabovska Y, Szulzewsky F, Puigdelloses M, Monterroza L, Switchenko J, Wadhwani NR, Cimino PJ, Mackay A, Jones C, Read RD, MacDonald TJ, Schniederjan M, Becher OJ, Hambardzumyan D (2020). Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 144(1), 53-69. (Read full article)
  19. Alexander J, LaPlant QC, Pattwell SS, Szulzewsky F, Cimino PJ, Caruso FP, Pugliese P, Chen Z, Chardon F, Hill AJ, Spurrell C, Ahrendsen D, Pietras A, Starita LM, Hambardzumyan D, Iavarone A, Shendure J, Holland EC (2020). Multimodal single-cell analysis reveals distinct radioresistant stem-like and progenitor cell populations in murine glioma. Glia, 68(12), 2486-2502. (Read full article)
  20. Takadera M, Satomi K, Szulzewsky F, Cimino PJ, Holland EC, Yamamoto T, Ichimura K, Ozawa T (2020). Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathol Commun, 8(1), 203. (Read full article)
  21. De Boeck A, Ahn BY, DMello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL (2020). Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun, 11(1), 4997. (Read full article)
  22. Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M, Szulzewsky F, Wojciechowicz ML, Cimino PJ, Ezhilarasan R, Sulman EP, Ying M, Maayan A, Read RD, Hambardzumyan D (2020). Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia, 68(10), 2148-2166. (Read full article)
  23. Niu B, Zeng X, Phan TA, Szulzewsky F, Holte S, Holland EC, Tian JP (2020). Mathematical modeling of PDGF-driven glioma reveals the dynamics of immune cells infiltrating into tumors. Neoplasia, 22(9), 323-332. (Read full article)
  24. Szulzewsky F, Arora S, Hoellerbauer P, King C, Nathan E, Chan M, Cimino PJ, Ozawa T, Kawauchi D, Pajtler KW, Gilbertson RJ, Paddison PJ, Vasioukhin V, Gujral TS, Holland EC (2020). Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes Dev, 34(15-16), 1051-1064. (Read full article)
  25. Szulzewsky F, Cimino PJ (2020). Fusing the Genetic Landscape of Infantile High-Grade Gliomas. Cancer Discov, 10(7), 904-906. (Read full article)
  26. Pattwell SS, Arora S, Cimino PJ, Ozawa T, Szulzewsky F, Hoellerbauer P, Bonifert T, Hoffstrom BG, Boiani NE, Bolouri H, Correnti CE, Oldrini B, Silber JR, Squatrito M, Paddison PJ, Holland EC (2020). A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nat Commun, 11(1), 2977. (Read full article)
  27. Ene CI, Kreuser SA, Jung M, Zhang H, Arora S, White Moyes K, Szulzewsky F, Barber J, Cimino PJ, Wirsching HG, Patel A, Kong P, Woodiwiss TR, Durfy SJ, Houghton AM, Pierce RH, Parney IF, Crane CA, Holland EC (2019). Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol, 22(5), 639-651. (Read full article)
  28. Wirsching HG, Arora S, Zhang H, Szulzewsky F, Cimino PJ, Quva C, Houghton AM, Glorioso JC, Weller M, Holland EC (2019). Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma depends on MMP9. Neuro Oncol, 21(12), 1607-1609. (Read full article)
  29. Herting CJ, Chen Z, Maximov V, Duffy A, Szulzewsky F, Shayakhmetov DM, Hambardzumyan D (2019). Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain, 142(12), 3834-3851. (Read full article)
  30. Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velzquez Vega JE, Shelton J, Switchenko JM, Ross JL, McSwain LF, Huse JT, Westermark B, Nelander S, Forsberg-Nilsson K, Uhrbom L, Maturi NP, Cimino PJ, Holland EC, Kettenmann H, Brennan CW, Brat DJ, Hambardzumyan D (2019). Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncoimmunology, 8(11), e1655360. (Read full article)
  31. Wirsching HG, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino PJ, Amankulor N, Campbell JS, McFerrin L, Pattwell SS, Ene C, Hicks A, Ball M, Yan J, Zhang J, Kumasaka D, Pierce RH, Weller M, Finer M, Quva C, Glorioso JC, Houghton AM, Holland EC (2019). Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 4(13). (Read full article)
  32. Ozawa T, Arora S, Szulzewsky F, Juric-Sekhar G, Miyajima Y, Bolouri H, Yasui Y, Barber J, Kupp R, Dalton J, Jones TS, Nakada M, Kumabe T, Ellison DW, Gilbertson RJ, Holland EC (2018). A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB. Cell Rep, 23(13), 3787-3797. (Read full article)
  33. Cimino PJ, Kim Y, Wu HJ, Alexander J, Wirsching HG, Szulzewsky F, Pitter K, Ozawa T, Wang J, Vazquez J, Arora S, Rabadan R, Levine R, Michor F, Holland EC (2018). Increased HOXA5 expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes Dev, 32(7-8), 512-523. (Read full article)
  34. Szulzewsky F, Schwendinger N, Gneykaya D, Cimino PJ, Hambardzumyan D, Synowitz M, Holland EC, Kettenmann H (2019). Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro Oncol, 20(3), 355-366. (Read full article)
  35. Herting CJ, Chen Z, Pitter KL, Szulzewsky F, Kaffes I, Kaluzova M, Park JC, Cimino PJ, Brennan C, Wang B, Hambardzumyan D (2017). Genetic driver mutations define the expression signature and microenvironmental composition of high-grade gliomas. Glia, 65(12), 1914-1926. (Read full article)
  36. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M, Margineantu DH, Rao A, Bolouri H, Delrow J, Hockenbery D, Houghton AM, Holland EC (2017). Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev, 31(8), 774-786. (Read full article)
  37. Szulzewsky F, Arora S, de Witte L, Ulas T, Markovic D, Schultze JL, Holland EC, Synowitz M, Wolf SA, Kettenmann H (2016). Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 64(8), 1416-36. (Read full article)
  38. Pannell M, Meier MA, Szulzewsky F, Matyash V, Endres M, Kronenberg G, Prinz V, Waiczies S, Wolf SA, Kettenmann H (2014). The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease. Brain Struct Funct, 221(2), 1157-72. (Read full article)
  39. Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B, Tamagno I, Zhou H, Li X, Kettenmann H, Ransohoff RM, Hambardzumyan D (2015). Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 6(17), 15077-94. (Read full article)
  40. Hoffmann CJ, Harms U, Rex A, Szulzewsky F, Wolf SA, Grittner U, Lttig-Tnnemann G, Sendtner M, Kettenmann H, Dirnagl U, Endres M, Harms C (2015). Vascular signal transducer and activator of transcription-3 promotes angiogenesis and neuroplasticity long-term after stroke. Circulation, 131(20), 1772-82. (Read full article)
  41. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, Holtman IR, Wang X, Eggen BJ, Boddeke HW, Hambardzumyan D, Wolf SA, Kettenmann H (2015). Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One, 10(2), e0116644. (Read full article)
  42. Preissler J, Grosche A, Lede V, Le Duc D, Krgel K, Matyash V, Szulzewsky F, Kallendrusch S, Immig K, Kettenmann H, Bechmann I, Schneberg T, Schulz A (2014). Altered microglial phagocytosis in GPR34-deficient mice. Glia, 63(2), 206-15. (Read full article)
  43. Pannell M, Szulzewsky F, Matyash V, Wolf SA, Kettenmann H (2014). The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4. Glia, 62(5), 667-79. (Read full article)
  44. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Lehnardt S, Hanisch UK, Synowitz M, Markovic D, Wolf SA, Glass R, Kettenmann H (2013). Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro Oncol, 15(11), 1457-68. (Read full article)
  45. Bulavina L, Szulzewsky F, Rocha A, Krabbe G, Robson SC, Matyash V, Kettenmann H (2012). NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signal, 9(2), 199-205. (Read full article)

Review

  1. Szulzewsky F, Thirimanne HN, Holland EC (2024). Meningioma: current updates on genetics, classification, and mouse modeling. [Review]. Ups J Med Sci, 129. (Read full article)
  2. Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC (2021). Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. [Review]. Neuro Oncol, 23(23 Suppl 5), S4-S15. (Read full article)
  3. Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF (2021). Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. [Review]. Glia, 69(9), 2059-2076. (Read full article)
  4. Szulzewsky F, Holland EC, Vasioukhin V (2021). YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. [Review]. Dev Biol, 475, 205-221. (Read full article)