Biochemistry

In the Biochemistry Department, we are a vigorous group of scientists and trainees dedicated to the expansion and transmission of knowledge about the biological world. Our particular focus is the characterization of macromolecules and biological processes at the molecular level. Research groups in the department address the structure of biological macromolecules, the mechanisms by which they function, and the possible applications to research technology and to medicine.

Latest News

Biochemistry's Rising Star Symposium (Sept 22-23)
Research, Education
Sep 15, 2016

Biochemistry's Rising Star Symposium (Sept 22-23)

Biochemistry hosts the Rising Stars Symposium on September 22nd and 23rd highlighting accomplished young scientists from across the country to share their research in Structural Biology/Imaging and Cell Biology (day 1) and Chemical Biology and Metabolism (day 2). ... Read More

Biochemistry
Snails’ Speedy Insulin
Research
Sep 12, 2016

Snails’ Speedy Insulin

diabetes

University of Utah researchers have found that the structure of an insulin molecule produced by predatory cone snails may be an improvement over current fast-acting therapeutic insulin. The finding suggests that the cone snail insulin, produced by the snails to stun their prey, could begin working in as few as five minutes, compared with 15 minutes for the fastest-acting insulin currently available. ... Read More

Biochemistry
University of Utah Biochemist Is 1 of 4 Researchers Globally to Receive JDRF Grants to Develop ‘Smart’ Glucose-Responsive Insulin
Research
Feb 25, 2016

University of Utah Biochemist Is 1 of 4 Researchers Globally to Receive JDRF Grants to Develop ‘Smart’ Glucose-Responsive Insulin

diabetes, type 1 diabetes

University of Utah biochemist Danny Chou, Ph.D., is one of four researchers worldwide to receive a grant from the Juvenile Diabetes Research Foundation (JDRF) and the pharmaceutical company Sanofi US Services Inc. to develop glucose-responsive insulin to help millions of people with Type 1 diabetes (T1D) maintain proper blood glucose levels. ... Read More

Biochemistry
A Molecular Noose Caught in the Act
Research
Dec 03, 2015

A Molecular Noose Caught in the Act

One of the most fundamental challenges that a cell faces is how to bring membranes that are far apart, close together. New research in Science shows how cellular machinery, called ESCRT (Endosomal Sorting Complexes Required for Transport), accomplishes this essential task. ... Read More

Biochemistry

Faculty Spotlight

Animal viruses often maximize their propagation by increasing host cell survival and proliferation. Oncogenic viruses can also induce cancers because these same activities underlie cellular transformation. Studies of viral proteins have therefore provided great insights into the host pathways that control cell proliferation and survival. Much less is known about how viral non-coding RNAs (ncRNAs) manipulate host cell proliferation pathways. Dr. Cazalla’s lab uses genetics, molecular biology, and biochemistry with the aim of filling this important gap in our understanding.
Herpesvirus saimiri (HVS), a g-herpesvirus that establishes latency in T cells of New World primates and has the ability to cause aggressive leukemias and lymphomas in non-natural hosts, expresses seven small nuclear (sn), U-rich ncRNAs called HSURs in latently infected cells. Dr. Cazalla’s lab has recently discovered novel molecular functions for these viral ncRNAs. One of these viral snRNAs, HSUR 2, base-pairs with two host microRNAs (miRNAs), miR-142-3p and miR-16, and with host mRNAs. HSUR 2 targets include mRNAs encoding Retinoblastoma (pRb) and factors involved in p53 signaling and apoptosis. Base-pairing between HSUR 2 and miR-142-3p and miR-16, and between HSUR 2 and host mRNAs results in HSUR 2-mediated mRNA repression, suggesting that HSUR 2 recruits these two cellular miRNAs to target mRNAs. These findings assign a novel role for this viral Sm-class RNA as a miRNA adaptor in post pre-mRNA-processing regulation of gene expression. We have also discovered that HSUR 2 utilizes this mechanism to inhibit apoptosis in infected cells. We are currently investigating other ncRNAs expressed by either HVS or other g-herpesviruses that function through similar mechanisms.
Demián Cazalla did his undergraduate studies at the University of Buenos Aires, Argentina. He obtained his Ph.D. studying splicing factors with Javier Cáceres at the Medical Research Council Human Genetics Unit in Edinburgh, Scotland. He was a postdoc at Yale University with Joan Steitz before joining the faculty of the University of Utah School of Medicine.
Cazalla Website

Animal viruses often maximize their propagation by increasing host cell survival and proliferation. Oncogenic viruses can also induce cancers because these same activities underlie cellular transformation. Studies of viral proteins have therefore provided great insights into the host pathways that control cell proliferation and survival. Much less is known about how viral non-coding RNAs (ncRNAs) manipulate host cell proliferation pathways. Dr. Cazalla’s lab uses genetics, molecular biology, and biochemistry with the aim of filling this important gap in our understanding.

Herpesvirus saimiri (HVS), a g-herpesvirus that establishes latency in T cells of New World primates and has the ability to cause aggressive leukemias and lymphomas in non-natural hosts, expresses seven small nuclear (sn), U-rich ncRNAs called HSURs in latently infected cells. Dr. Cazalla’s lab has recently discovered novel molecular functions for these viral ncRNAs. One of these viral snRNAs, HSUR 2, base-pairs with two host microRNAs (miRNAs), miR-142-3p and miR-16, and with host mRNAs. HSUR 2 targets include mRNAs encoding Retinoblastoma (pRb) and factors involved in p53 signaling and apoptosis. Base-pairing between HSUR 2 and miR-142-3p and miR-16, and between HSUR 2 and host mRNAs results in HSUR 2-mediated mRNA repression, suggesting that HSUR 2 recruits these two cellular miRNAs to target mRNAs. These findings assign a novel role for this viral Sm-class RNA as a miRNA adaptor in post pre-mRNA-processing regulation of gene expression. We have also discovered that HSUR 2 utilizes this mechanism to inhibit apoptosis in infected cells. We are currently investigating other ncRNAs expressed by either HVS or other g-herpesviruses that function through similar mechanisms.

Demián Cazalla did his undergraduate studies at the University of Buenos Aires, Argentina. He obtained his Ph.D. studying splicing factors with Javier Cáceres at the Medical Research Council Human Genetics Unit in Edinburgh, Scotland. He was a postdoc at Yale University with Joan Steitz before joining the faculty of the University of Utah School of Medicine.

Cazalla Website

Help Progress, Give Today

You can help the Department of Biochemistry continue to progress with even a small contribution.

Give Today!

Upcoming Events

View Calendar